中文标题#
DINOv3 用於醫學影像配準的測試時訓練
英文标题#
DINOv3 with Test-Time Training for Medical Image Registration
中文摘要#
先驗的醫學影像配準方法,特別是基於學習的方法,通常需要大量訓練數據,這限制了臨床應用。 為了克服這一限制,我們提出了一種無需訓練的流程,該流程依賴於凍結的 DINOv3 編碼器和特徵空間中的變形場測試時優化。 在兩個代表性基準上,該方法準確且產生規則的變形。 在 Abdomen MR-CT 上,它達到了最佳平均 Dice 分數(DSC)0.790,同時具有最低的 95 百分位 Hausdorff 距離(HD95)4.9+-5.0 和 Log-Jacobian 的標準差(SDLogJ)0.08+-0.02。 在 ACDC 心臟 MRI 上,它將平均 DSC 提高到 0.769,並將 SDLogJ 降低到 0.11,HD95 降低到 4.8,相對於初始對齊有顯著提升。 結果表明,在測試時在一個緊湊的基礎特徵空間中操作為臨床配準提供了一個實用且通用的解決方案,而無需額外訓練。
英文摘要#
Prior medical image registration approaches, particularly learning-based methods, often require large amounts of training data, which constrains clinical adoption. To overcome this limitation, we propose a training-free pipeline that relies on a frozen DINOv3 encoder and test-time optimization of the deformation field in feature space. Across two representative benchmarks, the method is accurate and yields regular deformations. On Abdomen MR-CT, it attained the best mean Dice score (DSC) of 0.790 together with the lowest 95th percentile Hausdorff Distance (HD95) of 4.9+-5.0 and the lowest standard deviation of Log-Jacobian (SDLogJ) of 0.08+-0.02. On ACDC cardiac MRI, it improves mean DSC to 0.769 and reduces SDLogJ to 0.11 and HD95 to 4.8, a marked gain over the initial alignment. The results indicate that operating in a compact foundation feature space at test time offers a practical and general solution for clinical registration without additional training.
文章页面#
PDF 獲取#
抖音掃碼查看更多精彩內容