中文标题#
通过聚类和退火优化分布式量子计算的编译
英文标题#
Optimizing Compilation for Distributed Quantum Computing via Clustering and Annealing
中文摘要#
高效地将量子程序映射到分布式量子计算(DQC)是具有挑战性的,尤其是在考虑具有不同结构的异构量子处理单元(QPUs)时。 在本文中,我们提出了一种全面的编译框架,通过三个关键见解来解决这些挑战:利用量子电路中的结构模式,使用聚类进行初始量子位放置,并使用退火算法调整量子位映射。 实验结果证明了我们方法的有效性以及处理复杂异构分布式量子系统的能力。 我们的评估显示,与基线相比,我们的方法最多可将目标值降低 88.40%。
英文摘要#
Efficiently mapping quantum programs onto Distributed quantum computing (DQC) are challenging, particularly when considering the heterogeneous quantum processing units (QPUs) with different structures. In this paper, we present a comprehensive compilation framework that addresses these challenges with three key insights: exploiting structural patterns within quantum circuits, using clustering for initial qubit placement, and adjusting qubit mapping with annealing algorithms. Experimental results demonstrate the effectiveness of our methods and the capability to handle complex heterogeneous distributed quantum systems. Our evaluation shows that our method reduces the objective value at most 88.40% compared to the baseline.
文章页面#
PDF 获取#
抖音扫码查看更多精彩内容