中文标题#
虛擬 DES 圖像是否是真實圖像的有效替代品?
英文标题#
Are Virtual DES Images a Valid Alternative to the Real Ones?
中文摘要#
對比增強光譜乳腺攝影(CESM)是一種成像方式,提供兩種類型的圖像,通常稱為低能(LE)圖像和雙能減影(DES)圖像。 在許多領域,尤其是在醫學中,圖像到圖像的翻譯技術的出現使得可以使用其他圖像作為輸入來人工生成圖像。 在 CESM 中,將這些技術應用於從 LE 圖像生成 DES 圖像可能非常有益,可能會減少與高能圖像採集相關的患者輻射暴露。 在本研究中,我們調查了三種用於人工生成 DES 圖像(虛擬 DES)的模型:一個預訓練的 U-Net 模型、一個端到端訓練的 U-Net 模型以及一個 CycleGAN 模型。 我們還進行了一系列實驗,以評估使用虛擬 DES 圖像對 CESM 檢查分類為惡性和非惡性類別的影響。 據我們所知,這是第一項評估虛擬 DES 圖像對 CESM 病灶分類影響的研究。 結果表明,使用虛擬 DES 圖像時,最佳性能由預訓練的 U-Net 模型實現,F1 得分為 85.59%,而使用真實 DES 圖像時為 90.35%。 這種差異可能是由於真實 DES 圖像中的額外診斷信息,這有助於更高的分類準確性。 然而,虛擬 DES 圖像生成的潛力是巨大的,未來的進步可能會縮小這一性能差距,使其達到僅依賴虛擬 DES 圖像在臨床上可行的水平。
英文摘要#
Contrast-enhanced spectral mammography (CESM) is an imaging modality that provides two types of images, commonly known as low-energy (LE) and dual-energy subtracted (DES) images. In many domains, particularly in medicine, the emergence of image-to-image translation techniques has enabled the artificial generation of images using other images as input. Within CESM, applying such techniques to generate DES images from LE images could be highly beneficial, potentially reducing patient exposure to radiation associated with high-energy image acquisition. In this study, we investigated three models for the artificial generation of DES images (virtual DES): a pre-trained U-Net model, a U-Net trained end-to-end model, and a CycleGAN model. We also performed a series of experiments to assess the impact of using virtual DES images on the classification of CESM examinations into malignant and non-malignant categories. To our knowledge, this is the first study to evaluate the impact of virtual DES images on CESM lesion classification. The results demonstrate that the best performance was achieved with the pre-trained U-Net model, yielding an F1 score of 85.59% when using the virtual DES images, compared to 90.35% with the real DES images. This discrepancy likely results from the additional diagnostic information in real DES images, which contributes to a higher classification accuracy. Nevertheless, the potential for virtual DES image generation is considerable and future advancements may narrow this performance gap to a level where exclusive reliance on virtual DES images becomes clinically viable.
文章页面#
PDF 获取#
抖音掃碼查看更多精彩內容